Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Heart ; 109(12): 936-943, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2252110

RESUMEN

BACKGROUND AND AIM: The efficacy of pre-COVID-19 and post-COVID-19 infection 12-lead ECGs for identifying athletes with myopericarditis has never been reported. We aimed to assess the prevalence and significance of de-novo ECG changes following COVID-19 infection. METHODS: In this multicentre observational study, between March 2020 and May 2022, we evaluated consecutive athletes with COVID-19 infection. Athletes exhibiting de-novo ECG changes underwent cardiovascular magnetic resonance (CMR) scans. One club mandated CMR scans for all players (n=30) following COVID-19 infection, despite the absence of cardiac symptoms or de-novo ECG changes. RESULTS: 511 soccer players (median age 21 years, IQR 18-26 years) were included. 17 (3%) athletes demonstrated de-novo ECG changes, which included reduction in T-wave amplitude in the inferior and lateral leads (n=5), inferior leads (n=4) and lateral leads (n=4); inferior T-wave inversion (n=7); and ST-segment depression (n=2). 15 (88%) athletes with de-novo ECG changes revealed evidence of inflammatory cardiac sequelae. All 30 athletes who underwent a mandatory CMR scan had normal findings. Athletes revealing de-novo ECG changes had a higher prevalence of cardiac symptoms (71% vs 12%, p<0.0001) and longer median symptom duration (5 days, IQR 3-10) compared with athletes without de-novo ECG changes (2 days, IQR 1-3, p<0.001). Among athletes without cardiac symptoms, the additional yield of de-novo ECG changes to detect cardiac inflammation was 20%. CONCLUSIONS: 3% of athletes demonstrated de-novo ECG changes post COVID-19 infection, of which 88% were diagnosed with cardiac inflammation. Most affected athletes exhibited cardiac symptoms; however, de-novo ECG changes contributed to a diagnosis of cardiac inflammation in 20% of athletes without cardiac symptoms.


Asunto(s)
COVID-19 , Fútbol , Humanos , Adulto Joven , Adulto , Prevalencia , COVID-19/complicaciones , COVID-19/epidemiología , Electrocardiografía , Arritmias Cardíacas/diagnóstico , Atletas , Inflamación , Prueba de COVID-19
2.
Neuroimage ; 263: 119663, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2049714

RESUMEN

BACKGROUND: When characterizing the brain's resting state functional connectivity (RSFC) networks, demonstrating networks' similarity across sessions and reliability across different scan durations is essential for validating results and possibly minimizing the scanning time needed to obtain stable measures of RSFC. Recent advances in optical functional neuroimaging technologies have resulted in fully wearable devices that may serve as a complimentary tool to functional magnetic resonance imaging (fMRI) and allow for investigations of RSFC networks repeatedly and easily in non-traditional scanning environments. METHODS: Resting-state cortical hemodynamic activity was repeatedly measured in a single individual in the home environment during COVID-19 lockdown conditions using the first ever application of a 24-module (72 sources, 96 detectors) wearable high-density diffuse optical tomography (HD-DOT) system. Twelve-minute recordings of resting-state data were acquired over the pre-frontal and occipital regions in fourteen experimental sessions over three weeks. As an initial validation of the data, spatial independent component analysis was used to identify RSFC networks. Reliability and similarity scores were computed using metrics adapted from the fMRI literature. RESULTS: We observed RSFC networks over visual regions (visual peripheral, visual central networks) and higher-order association regions (control, salience and default mode network), consistent with previous fMRI literature. High similarity was observed across testing sessions and across chromophores (oxygenated and deoxygenated haemoglobin, HbO and HbR) for all functional networks, and for each network considered separately. Stable reliability values (described here as a <10% change between time windows) were obtained for HbO and HbR with differences in required scanning time observed on a network-by-network basis. DISCUSSION: Using RSFC data from a highly sampled individual, the present work demonstrates that wearable HD-DOT can be used to obtain RSFC measurements with high similarity across imaging sessions and reliability across recording durations in the home environment. Wearable HD-DOT may serve as a complimentary tool to fMRI for studying RSFC networks outside of the traditional scanning environment and in vulnerable populations for whom fMRI is not feasible.

3.
Neurophotonics ; 8(2): 025002, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1666346

RESUMEN

Significance: High-density diffuse optical tomography (HD-DOT) has been shown to approach the resolution and localization accuracy of blood oxygen level dependent-functional magnetic resonance imaging in the adult brain by exploiting densely spaced, overlapping samples of the probed tissue volume, but the technique has to date required large and cumbersome optical fiber arrays. Aim: To evaluate a wearable HD-DOT system that provides a comparable sampling density to large, fiber-based HD-DOT systems, but with vastly improved ergonomics. Approach: We investigated the performance of this system by replicating a series of classic visual stimulation paradigms, carried out in one highly sampled participant during 15 sessions to assess imaging performance and repeatability. Results: Hemodynamic response functions and cortical activation maps replicate the results obtained with larger fiber-based systems. Our results demonstrate focal activations in both oxyhemoglobin and deoxyhemoglobin with a high degree of repeatability observed across all sessions. A comparison with a simulated low-density array explicitly demonstrates the improvements in spatial localization, resolution, repeatability, and image contrast that can be obtained with this high-density technology. Conclusions: The system offers the possibility for minimally constrained, spatially resolved functional imaging of the human brain in almost any environment and holds particular promise in enabling neuroscience applications outside of the laboratory setting. It also opens up new opportunities to investigate populations unsuited to traditional imaging technologies.

4.
J Pediatr Rehabil Med ; 13(3): 379-384, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-949028

RESUMEN

The COVID-19 pandemic has been a challenge to healthcare systems around the world. Within pediatric rehabilitation medicine, management of intrathecal baclofen has been particularly challenging. This editorial reviews how programs in the US and Canada coped with the quickly changing healthcare environment and how we can learn from this pandemic to be prepared for future crises.


Asunto(s)
Baclofeno/administración & dosificación , COVID-19/epidemiología , Espasticidad Muscular/tratamiento farmacológico , Pandemias , Niño , Comorbilidad , Humanos , Inyecciones Espinales , Relajantes Musculares Centrales/administración & dosificación , Espasticidad Muscular/epidemiología , SARS-CoV-2 , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA